
THE MELTING POT     ISSN 2504 – 8880  Volume  Number , 2027 1 March 2themeltingpotj@gmail.com

 

Page    7 
 

STATISTICAL COMPARISON OF DIFFERENT METHODS OF 

ESTIMATION (THE GENERALIZED LEAST SQUARES, WEIGHTED 

RIDGE AND, WEIGHTED LEAST SQUARES) IN THE PRESENCE OF 

HETEROSCEDASTICITY AND NON-NORMAL ERRORS 
 

 

Igwe, N. O., 

Madu, C.,  

Okeahialam, A. H.,  

Elem-Uche, O. 

Department of Maths/Statistics, Akanu Ibiam Federal Polytechnic,  

Unwana, Ebonyi State, Nigeria.  

 

Okereke, C. U.,  

Department of Statistics, Michael Okpara University of Agriculture,  

Umudike Umuahia-Abia State. 

 

Chinyere Theresa Madubuike 

Department of Mathematics, Abia State Polytechnic Aba, Abia State. 

ndyigwe@gmail.com, chukwunonsomadu37@gmail.com, kettbanky09@yahoo.com, 

ohossanna@yahoo.com, urchstat@gmail.com,vinc56@yahoo.com 

Corresponding Author’s Phone Number: 08064090157 

Other Authors: 08039508685, 08068730625, 08030893317, 07062872120, 08032927653. 

 

 

ABSTRACT 

Common problems in multiple regression models are heteroscedasticity and non-normal errors, 

which produce undesirable effects on the least squares estimators. This study saw reasons to 

combine different methods of estimation (The Ordinary Least Squares, Weighted Least Squares 

and Weighted Ridge Regression) to deal with these problems. From a simulation study, the 

results of comparisons show that for the condition of heteroscedasticity, Weighted Least Squares 

(WLS) estimates are more efficient than the other estimators considered. This is because its 

values in root mean square error (0.4788), residual standard error (2,7519) and residual mean 

absolute deviation (0.1167)  has the best linear unbiased estimates. For the condition of 

heteroscedasticity and non-normal errors, Weighted Least Squares produces estimates that were 

more efficient and precise.   

 

Keywords: Estimation Methods, Heteroscedasticity, Non-normal errors.  
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INTRODUCTION 

Regression analysis is concerned with the 

study of the relationship between the 

explained variable and one or more other 

explanatory variables. It provides estimates 

that are reasonably unbiased and efficient even 

when one or more of the assumptions is not 

completely met. However, a large violation of 

one or more assumptions (For given Xs, the 

mean value of the disturbance term 𝜇𝑖 is zero. 

For given Xs, the variance of the disturbance 

term 𝜇𝑖 is constant or homoscedastic) will 

result in poor estimates and consequently the 

wrong conclusions being drawn (Asukwo, 

2019). 

Two important problems are considered in 

regression analysis: heteroscedasticity and 

non-normal errors distribution. 

Heteroscedasticity is the term used to describe 

cases where the error terms do not have 

constant variance. The existence of 

heteroscedasticity is a major concern in the 

application of regression analysis, as it can 

invalidate statistical tests of significance that 

assume that the modeling errors are 

uncorrelated and uniform-hence that their 

variances do not vary with the effects being 

modeled.  Heteroscedasticity often occurs 

when there is a large difference among the 

sizes of the observations. Another common 

problem in regression estimation methods is 

that of non-normal errors. The term simply 

means that the error distributions have fatter 

tails than the normal distribution. These fat-

tailed distributions are more prone than the 

normal distribution to produce outliers, or 

extreme observations in the data (Welsch, 

2018).  

The Gauss-Markov theorem says that 

Ordinary Least Squares estimates for 

coefficients are BLUE when errors are normal 

and homoscedastic. When errors are non-

normal, the “E” property (Efficient) no longer 

holds for the estimators and in small samples, 

and the standard errors will be biased. The 

classical assumption needed for the Ordinary 

Least Squares estimator to be efficient 

requires that the variance of the error term to 

be consistent and the same for all 

observations. In other words, the term is 

expected to be homoscedastic. When the 

assumption of homoscedasticity is violated 

and the variance is different for different 

observations, we have a problem referred to as 

heteroscedasticity (Gujarati, 2004). 

Heteroscedasticity entails that the Ordinary 

Least Squares estimators of the population 

parameters are unbiased and consistent, but 

the usual standard errors become biased and 

inconsistent. In the case of heteroscedasticity, 

observations expected to have error terms with 

large variances are given a smaller weight than 

observations thought to have error terms with 

small variances. Specifically, coefficients are 

selected which minimize Ordinary Least 

Squares (It’s a special case of Generalized 

Least Squares) when the variance of all 

residuals is the same for all cases. The smaller 

the error variance, the more heavily the case is 

weighted. Intuitively, this makes sense; the 

observations with the smallest error variances 

should give the best information about the 

position of the true regression line. 

Generalized Least Squares (GLS) estimation 

can be a bit complicated. However, under 

certain conditions, estimators’ equivalent to 

those generated by GLS can be obtained using 

a Weighted Least Squares (WLS) procedure 

utilizing OLS regression on a transformed 

version of the original regression model. This 

method corrects for heteroscedasticity without 

altering the values of the coefficients. This 

method may be superior to regular OLS if 

heteroscedasticity is present, however, if the 

data is homoscedastic, the standard errors are 

equivalent to conventional standard errors 

estimated by OLS. Several modifications of 

the White method of computing 

heteroscedasticity-consistent standard errors 

have been proposed as corrections with 



THE MELTING POT     ISSN 2504 – 8880  Volume  Number , 2027 1 March 2themeltingpotj@gmail.com

 

Page    9 
 

superior finite sample properties (Chikezie, 

2014).   Thus, we typically examine the 

distribution of the errors to determine whether 

they are normal.   

One of the assumptions of the classical linear 

regression model is that there is no 

heteroscedasticity. Breaking this assumption 

means OLS estimators are not the Best Linear 

Unbiased Estimators (BLUE) and their 

variance is not the lowest of all other unbiased 

estimators.  Heteroscedasticity does not cause 

ordinary least squares coefficient estimators to 

be biased, although it can cause ordinary least 

squares estimates of the variance (and thus, 

standard errors) of the coefficients to be 

biased, possibly above or below the true or 

population variance (Richard, 2018). This 

study focuses on violation of the assumption 

that there is no linear relationship between the 

explanatory variables and the disturbances 

distribution. It is non-normal and there is non-

constant variance. This research is to give the 

idea that in the presence of heteroscedasticity 

and non-normal error in a regression model, 

the results obtained from Ordinary Least 

Squares Estimator are unreliable. The effects 

and remedy of such influences needs to be 

studied. 

The aim of this work is to examine the effect 

of heteroscedasticity and non-normal error 

problem on weighted least squares. The 

objectives are: 

1. To examine some estimators which are 

resistant to the combined problems of 

heteroscedasticity and non-normality. 

2. To fit the appropriate regression model 

on data having non-normality. 

3. Performing a diagnostic test to 

evaluate the performance of the 

estimated model. 

4. To compare the result with that of 

Ordinary Least Squares. 

This research will be limited to study the 

effect of heteroscedasticity and non-normal 

error problem on the traditional weighted least 

squares estimator using a set of collinear data 

set simulated from multivariate normal 

distribution when the disturbances violated the 

normality assumption. It help future 

researchers in choosing the appropriate 

estimator for estimating the regression 

parameters when the traditional method for 

estimating the parameters is unreliable in the 

presence of both heteroscedasticity and non-

normal error problem in a data set. 

LINEAR REGRESSION MODEL 

According to Okenna (2020), a regression model is said to be linear if it is linear both in 

variables and parameters. That is, viewing it on a graph, it can be estimated by a straight line. A 

linear regression model is simple if it contains only one independent variable.  

That is, Y = 𝛽0  +  𝛽1X +  e            ……..  (1) 

A regression equation containing more than one independent variable (the regression equation 

contains K-independent variables where k > 1 is termed multiple regression model.  

That is, Y = 𝛽0  +  𝛽1 𝑋1+ 𝛽2 𝑋2 +…+ 𝛽𝑘 𝑋𝑘 + e      ………   (2)  

Where 𝛽𝑗; j = 0,1,………,  k are unknown parameters, e is the error term. 

Suppose that the data 𝑋𝑖𝑗 have been collected on the variables 𝑋1, 𝑋2 ,…, 𝑋𝑘 and also 𝑌𝑖 has also 

been collected on Y, then we can re – write the model as follows:  

Y = 𝛽0  +  𝛽1 𝑋1𝑖+ 𝛽2 𝑋2𝑖 +…+ 𝛽𝑘 𝑋𝑘𝑖 + ei  ; i =  1, 2, … , n        ……….   (3) 
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ASSUMPTIONS OF CLASSICAL LINEAR REGRESSION MODEL 

1. The regression model is linear in parameters. 

2. The expected value of the residual given any value of the explanatory variable is zero 

(i.e. E(ei / xi )  =  0). 

3. The variance of the residual term given any value of the explanatory variable are equal 

(i.e.  Var(ei / xi )  =  σ2 ) . This is known as homoscedasticity. 

4. The values of the explanatory variable are fixed in repeating sampling. 

5. There is no correlation between the residual term given any value of the explanatory 

variable (i.e. Cor(ei , ej / xi , xj )  =  0). 

6. There should be no specification bias. 

7. The number of sample must be greater than the number of parameters to be estimated. 

8.  There is no linear relationship between the residual and the explanatory variable (i.e. 

Cor(ei / xi)  =  0). 

9. There is no exact linear relationship between the explanatory variable (i.e. the 

explanatory variables are not collinear). 

10. The residual term is normally distributed with mean of zero and variance σ2 
 (i.e. ei ̴ N(0, σ2 ). Gujarati (2004). 

HETEROSCEDASTICITY 

If the error terms do not have constant 

variance, they are said to be heteroscedastic. 

The term  heteroscedasticity which means 

‘deferring variance’ and comes from the 

Greek ‘hetero’ (different) and ‘skedasis’ 

(dispersion). When the assumptions of 

homoscedasticity are violated and the 

variance is different for different 

observations, we have a problem of 

heteroscedasticity (Favour, 2018). 

 

CAUSES OF HETEROSCEDASTICITY   

According to Okeke (2016), the factors that 

can cause disturbances to be heteroscedastic 

are: 

1. Influence of the size of an 

explanatory variable in the size of the 

disturbance: That is, observations expected 

to have error terms with large variances are 

given a smaller weight than observations 

thought to have error terms with small 

variances. The smaller the error variance, the 

more heavily the case is weighted. 

Intuitively, this makes sense; the observations 

with the smallest error variances should give 

the best information about the position of the 

true regression line.  

 

2. The presence of outliers can cause 

heteroscedasticity: An outlier is an 

observation generated apparently by a 

different population to that generating the 

remaining sample observations. When the 

sample size is small, the inclusion or 

exclusion of such an observation can 

substantially alter the results of regression 

analysis and  cause heteroscedasticity. 
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3. Data transformation: One of the 

solutions to solve the problem of 

multicollinearity consisted in 

transforming the model, taking ratios 

with respect to a variable (say xij ), that 

is, dividing both sides of the model by 

xij. Therefore, the disturbance will now 

be ui/xij, instead of ui. Assuming that ui 

fulfills the heteroscedastic assumption, 

the disturbances of the transformed 

model  (ui/xij) will no longer be 

homoscedastic but heteroscedastic. 

 

DETECTION OF 

HETEROSCEDASTICITY 
To detect heteroscedasticity, graphical or 

statistical test can be applied. 

1. Graphical test:  In this method, we are 

interested in the error term and its 

variation, so we plot a scatter plot that 

comes from a simple linear regression 

to detect possible deviations from 

homoscedasticity. 

 

2. Statistical test: Three most common 

statistical test procedures to identify a 

problem of heteroscedasticity are the 

Goldfeld-Quandt test, the Breusch-

Pagan test and the White test. 

(i) The Goldfeld-Quandt test 

(GQ): This test works under the 

assumption that the error term is 

homoscedastic. When this is true, the 

variance of one part of the must be the 

same as the variance of another part 

of the sample, independent on how 

the sample is sorted. If this is not the 

case we must conclude that the data is 

heteroscedastic. 

(ii) The Breusch-Pagan test (BP): 

This test is slightly more general 

than the Goldfeld-Quandt test, since 

it allows for more than one variable 

at a time to be tested. The starting 

point is a set of explanatory 

variables that we believe drives the 

size of the variance of the error 

term. 

(iii) White’s test: This test is similar to 

the BP-test, but does not assume 

any prior knowledge of the 

heteroscedasticity, but instead 

examines whether the error variance 

is affected by any of the regressors, 

their squares r cross products. It is a 

large sample test, but does not depend 

on any normality assumption. Hence, 

this test is more robust than the other 

two test procedures described above. 

 

REMEDYING HETEROSCEDASTICITY  

            Gabriel (2019) stated the following as 

ways to remedy heteroscedasticity 

1. Respecify the model: This is based on 

the fact that sometimes 

heteroscedasticity results from 

improper model specification. 

2. Transform the dependent 

variable(s): The use of transformation 

helps to stabilize the variance. Popular 

transformations of the dependent 

variable include the square root, log 

and reciprocal transformations. The log 

transform can be problematic if you 

want to exponentiate the results to 

present the results. 

3. The use of weighted least squares: 

OLS in the presence of  

heteroscedasticity  is LUE and not 

BLUE, Since it assigns equal weights 

(importance) to each observation. It is 

best to use an estimation method such 

that observations with greater 

variability are given less weight than 

those with smaller variability. 

 

NON-NORMALITY OF ERROR         

Various transformations are used to correct 

non-normally distributed data. Correlation, 

least squares regression, factor analysis, and 

related linear techniques are relatively robust 

against non-extreme deviations from 
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normality provided errors are not severely 

asymmetric (Kasu, 2019). Severe asymmetry 

might arise due to strong outliers. Log-linear 

analysis, logistic regression, and related 

techniques using maximum likelihood 

estimation are even more robust against 

moderate departures from normality. 

Likewise, Monte Carlo simulations show that 

t-test is robust against moderate violations of 

normality (Boneau, 2019). 

 

If the assumption that ‘e’ is distributed 

normally is called into question, we cannot 

use any of the t-test, F-test or R-square 

because these test are based on the 

assumption that ‘e’ is distributed normally. 

The result of these tests becomes 

meaningless.  

 

To detect non-normality in errors, normal 

probability plot or Shapiro-Wilk test is used. 

In many cases of non-normal condition where 

the checks suggest that the data is normally 

distributed, there are options: Transform the 

dependent variable (reapeating the normality 

checks on the transformed data). Common 

transformations include taking the log or 

square root of the dependent variable 

(Stephen, 2001). 

 

CAUSES FOR NON-NORMALITY 

Basil (2017) stated that there are six reasons 

that are frequently to blame for non-

normality. 

(i) Extreme Values  

(ii) Overlap of two or more processes  

(iii) Insufficient data discrimination  

(iv) Sorted data   

(v) Values close to zero or a natural limit  

(vi) Data follows a different distribution. 

 

Extreme values:  Too many extreme values 

in a data set will result in a skewed 

distribution. Normality of data can be 

achieved by cleaning the data. This involves 

determining measurement errors, data entry 

errors and outliers, and removing them from 

the data for valid reasons. It is important that 

outliers are identified as truly special causes 

before they are eliminated. Note: The nature 

of normally distributed data is that a small 

percentage of extreme values can be 

expected; not every outlier is caused by a 

special reason. Extreme values should only 

be explained and removed from the data if 

there are more of them than the expected 

under normal condition.  

 

Overlap of two or more processes: Data 

may not be normally distributed because it 

actually comes from more than one process, 

operator or shift, or from a process that 

frequently shifts. If two or more data sets that 

would be normally distributed on their own 

are overlapped, data may look bimodal or 

multimodal. The remedial action for these 

situations is to determine which X’s cause 

bimodal or multimodal distribution and then 

stratify the data. The data should be checked 

again for normality and afterward the 

stratified processes can be worked with 

separately. 

 

Insufficient data discrimination: Round-off 

errors or measurement devices with poor 

resolution can make truly continuous and 

normally distributed data look discrete and 

not normal. We can overcome insufficient 

data discrimination by using more accurate 

measurement systems or by collecting more 

data. 

 

Sorted data: Collected data might not be 

normally distributed if it represents simply a 

subset of the total output a process produced. 

This can happen if data is collected and 

analyzed after sorting. 

 

Values close to zero or a natural limit: If a 

process has many values close to zero or a 

natural limit, the data distribution will skew 

to the right or left. In this case, a 
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transformation such as the Box-Cox power 

transformation may help make data normal. 

In this method, all data is raised or 

transformed to a certain exponent indicated 

by lambda value. When comparing 

transformed data, everything under 

comparison must be transformed in the same 

way. 

 

Data follow a different distribution: There 

are many data types that follow a non-normal 

distribution by nature. Examples include 

Weibull distribution (found with life data 

such as survival times of a product), Log-

normal distribution (found with length data 

such as heights), Exponential distribution 

(found with growth data such as bacterial 

growth), Poisson distribution (found with rare 

events such as number of accidents), and 

Binomial distribution (found with proportion 

data such as percentage defectives). If data 

follow one of these different distributions, it 

must be dealt with using the same tools as 

with data that cannot be made normal. 

 

METHODS: The data used in this research 

was simulated by the application of Monte 

Carlo approach. Generalized least square 

which is OLS on the transformed variables 

that satisfy the standard least squares 

assumptions shall be employed in the 

analysis. The estimators thus obtained are 

known as GLS estimators and it is these 

estimators that are BLUE. 

 

The Weighted Least Squares estimator also 

known as the Generalized Least Squares 

estimator is given by: 𝛽̂WLS =  (𝑋𝚤WX)-1 

𝑋𝚤WY   where W is a diagonal matrix with 

diagonal elements wii . The diagonal elements 

of W matrix are set equal to wii =  

∫
1

𝑒𝑖̂
   𝑖𝑓 𝑒̂i ≠ 0

1     𝑖𝑓 𝑒̂i = 0
 where the 𝑒̂i  are residuals from 

an initial least squares fit to the data. The 

weight wii is applied to the observations and 

are intended to down-weight the extreme 

observations. Thus, the Weighted Least 

Squares estimated can be computed by 

applying Least Squares to the transformed 

observation √𝑤𝑖𝑖𝑦𝑖   and √𝑤𝑖𝑖𝑥𝑖 . 

 

The Weighted Ridge estimator can be 

computed using the formula: 𝛽̂WLS =  (𝑋𝚤WX 

+ KI)-1 𝑋𝚤WY, where is determined from the 

data using K =  
𝑃𝑆𝑊

2

𝛽̂ 𝛽̂𝑤𝑤
𝑖  .  

 𝑆𝑊
2  = 

(𝑌−𝑋𝛽̂𝑤 )  (𝑌−𝑋𝛽̂𝑤 )
𝑖

𝑛−𝑝
    

and  𝛽̂𝑤 denotes the coefficient estimates 

from the Weighted Least Squares estimators.  

 

Samples of 275 independent variables were 

generated randomly, while the error term was 

generated to follow a gamma distribution 

with shape parameter 0.8 and scale parameter 

0.25. These randomly generated values were 

used to estimate the values of the dependent 

variable using a multiple regression equation. 

Independent variables were also generated. 

We therefore compare the between estimators 

to ascertain the method which gives the best 

fit. 

  



THE MELTING POT     ISSN 2504 – 8880  Volume  Number , 2027 1 March 2themeltingpotj@gmail.com

 

Page    14 
 

Table 1: The simulated data are as follows: 

Serial number 1-40 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

10.25 1 2 3 2.50628 98.55 22 12 9 1.02849 

21.00 3 4 6 2.88376 71.20 13 16 18 3.40459 

31.75 5 6 9 0.11960 87.00 19 15 10 0.35767 

42.50 7 8 12 0.87806 32.25 4 15 15 0.22429 

53.25 9 10 15 0.31264 14.15 1 14 9 0.05469 

64.00 11 12 18 2.08087 80.80 12 11 30 0.12005 

74.75 13 14 21 0.09237 27.55 1 10 21 0.28793 

85.50 15 16 24 1.37403 84.75 15 4 21 3.68984 

96.25 17 18 27 2.17981 54.30 6 13 28 0.23479 

107.00 19 20 30 1.07171 59.35 8 12 25 3.58392 

113.05 27 8 3 0.38811 44.50 7 19 16 0.26534 

90.15 15 19 29 0.52988 106.85 22 2 15 1.40919 

62.80 11 18 18 0.33300 117.25 23 12 23 1.13184 

83.85 19 15 7 0.25689 51.90 11 20 8 0.74122 

75.05 12 3 23 1.89243 65.35 13 19 13 1.39283 

52.35 6 7 25 7.01011 47.25 4 3 27 0.63790 

51.00 10 15 10 0.67418 67.90 11 3 20 1.01339 

134.55 26 17 29 1.76874 128.55 27 4 17 0.82274 

73.10 17 13 4 1.95166 38.10 6 10 12 1.56090 

110.45 24 3 11 0.28749 59.75 7 11 29 0.28022 

 

Serial number 41-80 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

43.05 4 3 23 0.63209 50.55 9 13 13 1.50019 

82.90 16 7 16 3.27700 40.45 6 14 15 0.32293 

123.05 23 4 27 8.20782 62.30 11 10 16 0.00379 

134.65 26 6 27 2.80154 127.55 27 9 17 0.26221 

109.90 22 13 20 0.16629 74.70 15 7 12 1.34944 

40.20 8 8 6 0.71459 125.15 23 4 29 0.82923 

76.80 14 8 18 2.15934 101.70 20 14 20 0.02690 

100.00 21 11 14 0.37947 84.75 20 20 5 1.59284 

71.75 10 11 29 0.01921 49.05 8 11 15 0.09081 

109.10 22 17 20 2.07468 95.55 19 9 17 0.27295 

59.75 11 7 13 0.01226 99.65 22 17 11 1.11964 

25.95 3 16 13 0.22687 106.60 24 17 10 1.37293 

59.25 12 19 11 2.00247 79.30 13 7 24 0.75820 

69.10 10 19 28 0.55399 49.40 5 7 26 0.92580 

73.00 15 5 10 1.96895 112.65 22 15 23 0.18415 

32.70 2 20 24 1.06113 55.40 12 12 6 3.28219 

125.60 26 4 18 0.14929 107.70 19 6 28 1.71087 

109.80 22 3 18 1.40400 119.00 26 16 14 1.49706 

74.25 11 8 27 0.18412 102.55 21 14 17 0.69957 

91.95 15 10 29 0.08348 128.55 24 7 29 1.63697 
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Serial number 81-120 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

57.70 10 13 16 2.77464 34.25 3 6 19 1.38977 

121.90 25 13 20 0.16875 88.20 20 8 6 1.99884 

66.55 13 13 13 1.37635 70.45 12 5 19 0.13251 

110.25 23 5 15 0.06192 64.05 15 13 3 0.80199 

108.20 19 14 30 1.15127 107.30 20 7 24 1.55347 

30.50 5 7 8 1.11631 83.35 15 11 21 0.18558 

38.30 8 7 4 2.21850 94.10 19 11 16 0.09397 

119.50 23 6 24 7.85650 47.75 9 6 9 1.21517 

16.50 3 16 4 2.23800 64.90 15 14 4 0.40587 

58.10 7 14 28 1.92493 52.80 9 7 14 0.25252 

126.10 25 13 24 2.40304 120.55 24 5 21 2.17714 

54.85 7 4 23 1.16630 106.20 23 20 14 0.26343 

40.90 7 16 12 6.24027 57.60 7 6 26 0.44963 

130.20 24 4 30 0.07772 64.25 11 16 19 0.94960 

81.40 18 2 6 4.75151 29.15 5 19 9 2.47589 

103.40 21 15 18 5.21733 83.35 15 11 21 1.48732 

121.25 25 11 19 1.29970 66.30 9 13 28 0.10306 

106.45 20 6 23 2.09390 135.10 26 9 28 1.46494 

59.40 7 18 30 0.04543 35.10 3 7 20 2.31370 

78.80 16 17 14 0.13114 120.25 25 16 19 0.34795 

57.70 10 13 16 2.77464 34.25 3 6 19 1.38977 

 

Serial number 121-160 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

110.10 20 14 28 3.39827 66.10 12 11 16 0.22684 

58.40 11 19 14 0.34740 13.70 1 11 8 2.31812 

70.00 12 2 18 0.11493 110.95 20 15 29 3.38007 

57.80 13 20 6 1.12052 56.05 8 18 23 1.13853 

57.75 10 18 17 2.82058 31.95 6 4 5 0.77180 

93.90 22 9 4 5.26920 89.45 18 9 15 3.75368 

14.35 2 12 5 0.79718 31.20 1 18 26 0.68307 

24.80 3 6 10 1.24019 109.75 21 20 25 1.60452 

83.30 14 7 24 0.76378 66.35 9 18 29 6.91675 

110.95 22 13 21 0.02191 92.90 18 18 20 0.16444 

22.40 1 20 18 0.01244 127.90 26 3 20 4.24307 

19.90 4 19 4 0.31726 91.65 22 15 3 3.29506 

129.90 27 13 20 6.38635 126.55 27 14 17 0.05641 

55.20 6 19 30 2.39306 75.60 14 14 18 1.62687 

98.60 19 20 22 0.57244 63.10 10 7 20 0.25775 

60.05 12 15 11 0.49801 115.85 27 15 7 0.59819 

45.40 6 5 18 1.04896 72.00 12 13 22 2.74890 

85.40 16 5 18 0.03327 18.25 2 3 7 2.12152 

113.05 21 14 27 0.21923 54.30 11 8 8 0.82975 

90.85 22 19 3 1.19865 78.45 16 3 11 0.95000 
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           Serial number 161-200 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

83.75 13 11 29 0.14973 69.55 13 19 17 1.57796 

54.15 11 14 9 0.41445 98.00 23 19 6 0.71196 

114.40 21 2 26 2.54748 126.80 25 20 26 0.04712 

98.15 21 15 13 1.46984 64.10 9 3 24 1.77117 

99.45 24 16 3 8.13330 99.20 20 16 18 0.74909 

67.75 11 9 21 1.58066 94.60 22 16 6 2.02920 

82.60 18 17 10 1.62188 37.30 3 17 24 0.03099 

117.40 25 4 14 2.01538 81.10 18 14 8 1.40296 

131.60 25 17 30 0.19482 50.15 9 15 13 0.79900 

91.90 22 19 4 0.23131 123.20 26 16 18 0.00287 

115.60 25 13 14 2.51283 81.60 15 4 18 0.81333 

130.15 27 17 21 0.70115 94.10 20 10 12 0.62821 

94.55 21 12 9 0.10858 36.60 6 7 10 7.96025 

74.25 14 5 15 2.85285 47.75 7 8 17 0.74890 

60.35 13 2 5 4.46655 74.00 13 2 18 2.39371 

82.30 13 13 28 0.35661 26.15 2 16 17 0.33121 

46.35 8 14 13 2.95833 120.65 24 15 23 0.12636 

95.35 22 7 5 0.05484 28.70 1 20 24 0.82037 

26.10 1 12 20 0.58960 90.57 15 17 29 1.47171 

103.65 21 19 19 0.73882 48.30 11 17 4 2.35948 

 

           Serial number 201-240 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

20.05 3 14 7 0.8112 82.75 14 15 25 0.40359 

104.15 24 3 5 0.2344 41.05 8 9 7 0.63857 

39.75 5 8 17 2.4618 98.05 18 8 23 0.87972 

29.30 2 16 20 1.3502 62.45 10 5 19 0.04340 

79.95 18 4 5 0.9602 109.20 22 6 18 0.74020 

73.85 15 6 11 0.6289 49.85 10 5 7 0.09739 

58.70 10 8 16 0.0664 83.30 19 2 4 1.94311 

65.65 14 6 7 0.7237 39.45 7 18 11 3.96616 

116.95 24 2 17 2.1489 44.25 8 14 11 0.18499 

118.25 27 3 7 1.4307 53.25 6 13 27 4.31482 

48.80 5 10 26 0.0036 87.20 19 14 10 0.21664 

61.55 12 18 13 2.7092 98.60 22 17 10 1.09423 

110.55 20 17 29 0.5958 127.75 26 9 21 1.98270 

52.35 6 7 25 0.4093 51.00 11 14 6 4.21174 

93.85 17 9 23 12.4333 63.90 8 5 28 3.14475 

93.50 19 14 16 0.6099 115.75 22 10 25 0.14960 

95.35 20 9 13 0.7145 49.20 10 3 6 6.31578 

25.35 3 19 13 0.2802 129.40 27 5 18 0.15171 

101.40 21 4 14 3.1068 92.65 17 15 23 1.28279 

71.95 15 5 9 6.2428 104.45 21 15 19 3.13627 
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         Serial number 241-275 

Y X1 X2 X3 Ei Y X1 X2 X3 Ei 

112.35 23 5 17 1.57536 126.80 27 18 18 1.03382 

20.25 3 13 7 0.55512 64.50 8 2 28 0.29750 

99.65 23 16 7 0.50076 59.10 11 5 12 0.83986 

38.25 8 2 3 0.33582 38.80 8 15 6 6.41522 

27.50 4 2 8 1.06751 40.95 3 4 25 1.99674 

59.65 14 15 3 7.54888 30.10 4 10 12 0.47237 

95.75 21 6 9 0.00915 61.80 14 20 6 0.23017 

81.20 14 7 22 0.11606 72.70 15 17 12 0.27169 

88.75 15 5 25 1.51271 24.65 2 13 15 1.63617 

35.90 3 3 20 0.09267 58.50 12 7 8 2.23573 

47.05 10 19 7 1.50903 81.10 15 17 20 0.62603 

82.65 14 5 23 0.50950 33.55 4 19 17 0.22751 

24.80 4 5 6 0.91800 58.05 11 5 11 0.00134 

37.85 7 5 7 0.01279 40.75 3 5 25 3.32490 

43.70 3 6 28 0.61706 91.20 17 17 22 6.21695 

54.75 8 14 21 1.62353      

24.90 5 14 4 0.24255      

87.40 15 17 26 2.87319      

43.20 9 13 6 0.03004      

92.95 18 2 17 0.04229      

 

Figure 1: 
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Figure 2: 

 

The above plot revealed that the given did not obey normality assumption. The fitted 

model parameters are as follows: 𝜷𝟎 = 3.5, 𝜷𝟏 = 4.0, 𝜷𝟐 = -0.2 and  𝜷𝟑 = 1.05. 

The summary of the results obtained from the estimators suggests that the Ordinary Least 

Squares and Weighted Ridge Regression are appropriate in the presence of a non-normal 

error. However, the Weighted Least Squares is least affected by the distribution of the 

error term as it pose to be the most efficient estimator (estimator with the least error). 

This is confirmed by the residual standard error, residual mean absolute deviation and the 

root mean square error as can be seen below: 

 

Table 2: Summary of Efficiency Test among various Estimators 

Estimator          RSE         RMAD        RMSE 

Ordinary Least Squares          1.684         2.7978        0.5403 

Weighted Least Squares          0.4788         2.7519        0.1167 

Weighted Ridge Regression           1.3424         2.8960        0.9853 

 

Having obtained this result, the residual of the weighted least squares estimate was 

subjected to further error diagnostics. The parameter estimate for the weighted least 

squares, with the inverse of the response variable as the weight is shown in table 4 above. 
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The normal distribution test, auto-correlation test, homoscedasticity test and the multi-

colinearity test were adopted to identify if there are further violations of the classical 

linear normal regression model which may have also affected the result. 

Jarque Bera test for normality, adopted to evaluate if the error term follows a normal 

distribution strongly rejects the null hypothesis of normality. This confirms that the error 

term is non-normal and is suitable for the argument of this paper. 

Durbin-Watson test for the presence of auto-correlation do not reject the null hypothesis 

of no serial correlation, thus indicating strong evidence that there is no serial correlation 

between the error terms. 

Breusch-Pagan test of homoscedasticity also rejected the null hypothesis of 

homoscedasticity. 

Lastly, the test of multicollinearity among the predictor variables using 1% two tail 

significance level showed that there is no multicollinearity (no indication of perfect 

correlation between the independent variables). 

Table 4. Summary of Diagnostic Test of the Residuals for Weighted Least Squares 

Test Null Hypothesis Method Test Statistic DF P-Value 

Normality Data is normal Jarque-

Bera 

    347.95 2 0.000 

Auto-correlation No serial correlation Durbin 

Watson 

     1.9509  0.3402 

Homoscedasticity Constant variance Breusch-

Pagan 

      3,1301 3 0.372 

Multi-collinearity No perfect correlation VIF       0.0441  0.000 

 

Summary: Based on the analytical result, the weighted least squares estimator gave the 

most efficient estimate. All estimators however were unbiased and had their estimates 

very close to the actual estimate. The residual of weighted least square estimator was 

further diagnosed and the data was checked for other factors that may have affected the 

efficiency of other estimators. The diagnostic test further showed that apart from the non-

normality assumption (which is our focal point of interest), no other assumption of the 

classical linear normal regression model was violated.   

 

Conclusion: Based on the analytical result, the following conclusions were reached: 

1. In the presence of both heteroscedasticity and non-normal error, the Ordinary Least 

Squares estimators produces relatively large mean square errors, hence it gives 

unstable parameter estimates. 
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2. This study reveal that the consequencies of heteroscedasticity in the presence of non-

normal error is more severe compared to when the error distribution is normal. 

3. The results of comparisons show that for the condition of heteroscedasticity, weighted 

least squares estimates are more efficient and precise than the other estimators 

considered. This also applies when both heteroscedasticity and non-normal error are 

considered. 

Recommendation: We therefore recommend that Weighted Least Squares method of 

estimation having produced estimates that are more efficient and precise than the other 

estimators considered in this study (has the best linear and unbiased estimates) should be 

considered first while dealing with heteroscedasticity and non-normal errors being the 

common problems in multiple regression models. 
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